Classifier Comparisons On Credit Approval Prediction
نویسندگان
چکیده
Inspired by the paper of Simplifying Decision Trees by J.R. Quinlan and the book C4.5: programs for machine learning by J.R. Quinlan and Morgan Kaufmann where they test the very traditional pruned decision tree models on credit approval data set, we want to re-exam the data set used in Simplifying Decision Trees and build advanced models to increase the accuracy. No surprise that all of the models we built beat the bench mark (12.9%, the best result from Quinlans paper), among which SVM with polynomial kernel and random forest achieve the best result (9.18%).
منابع مشابه
Investigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملCredit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks
The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...
متن کاملEnhancing credit scoring model performance by a hybrid scoring matrix
Competition of the consumer credit market in Taiwan has become severe recently. Therefore, most financial institutions actively develop credit scoring models based on assessments of the credit approval of new customers and the credit risk management of existing customers. This study uses a genetic algorithm for feature selection and decision trees for customer segmentation. Moreover, it utilize...
متن کاملUsing neural network ensembles for bankruptcy prediction and credit scoring
Bankruptcy prediction and credit scoring have long been regarded as critical topics and have been studied extensively in the accounting and finance literature. Artificial intelligence and machine learning techniques have been used to solve these financial decision-making problems. The multilayer perceptron (MLP) network trained by the back-propagation learning algorithm is the mostly used techn...
متن کاملLoan Application Approval using Meta Classifier
A Meta Classifier in this approach is used for the approval of Loan application, as a Data mining classification tool to support Business operations in a very secure way. The goal of designing a Meta classifier system is to achieve the best possible classification performance for the task of effective decision making. This Meta classifier is the combination of Naïve Bayesian classifier, K-Neare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014